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1 Executive summary 

This study simulates a “carbon fee and dividend” policy similar to that proposed by the Citizens’ 
Climate Lobby (CCL).1 The policy consists of a $15 per ton of CO2 “fee” (carbon tax) applied to 
domestic fossil fuel production and imports. Exports receive full tax rebates to maintain 
competitiveness of U.S. businesses. All remaining revenue is distributed to households as a 
taxable “dividend” (rebate) on a modified per-capita basis. 
 
Assuming that firms pass the entire carbon fee on to consumers in the form of higher prices and 
there is no change in employment, technologies, or consumer behavior, the net financial effect of 
the policy for a given household is the difference between higher cost of goods and services and 
additional disposable income from the dividend.  
 
Given these assumptions, the policy confers a positive net financial benefit on 53% of 
households nationwide (58% of individuals). An additional 19% of households incur a “minor 
loss”, defined as a net financial loss that does not exceed 0.2% of pre-tax household income. 
 
The distributional effects are highly progressive. Nearly 90% of households living below the 
Federal Poverty Level are benefited by the policy. The average net benefit in this group is $311 
per household, equivalent to 2.8% of average pre-tax income. Overall, the primary distributional 
effect is to shift purchasing power from the top quintile to the bottom two quintiles of the income 
distribution (see figure on following page). 
 
About two-thirds of younger households (age 18 to 35) and older households (age 80 and above) 
are benefited, compared to 44% of households age 50 to 65. Three-quarters of Latino households 
are benefited, compared to less than one-half of white households. The large household sample 
used here (5.8 million households) allows results to be generated for each of 30,000+ zip codes, 
revealing both regional and local spatial patterns (see figure on following page). Households in 
rural areas are not disproportionately harmed by the policy (54% benefited) and generally fare 
better than those living in suburbs (50% benefited). 
 
Differential impacts across space and household type highlight the ways in which “geo-
demographic” patterns combine with policy design to affect distributional outcomes. It is 
possible that a different dividend allotment formula with respect to household size and age, for 
example, could generate net positive benefits for a larger portion of the population. 
 
This study introduces a number of methodological advances relevant to both carbon footprinting 
and carbon tax analysis. These include adjustments for under-reporting of expenditures and 
variation in prices paid for goods and services across both space and household characteristics, 
as well as improvements to input-output modeling of carbon tax price impacts. 

1 https://citizensclimatelobby.org/carbon-fee-and-dividend/ 
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4 Introduction 

Governments often seek to discourage harmful behavior by making such activity costlier. 
Second-hand smoke causes harm to innocent bystanders, prompting federal, state, and local 
politicians to impose a tax on cigarettes. The tax increases the price of cigarettes – discouraging 
consumption and improving public health – while providing a source of revenue. 
 
Unmitigated burning of coal, oil, and natural gas causes harm via local air pollution and global 
climate change. A “carbon fee” – a tax on fossil fuels – is analogous to a cigarette tax, 
discouraging the use of goods, services, and technologies that rely on fossil fuels and 
encouraging clean alternatives.2  
 
A carbon fee increases the price of carbon-intensive products. This “price signal” is key to the 
policy’s efficacy, as it incentivizes conservation and low-carbon choices among households and 
businesses. But the prospect of American families – especially low-income and elderly – facing 
higher costs is a central concern of carbon fee skeptics on both ends of the political spectrum. 
 
Of course, a carbon fee also generates revenue that can be used to make households and/or 
businesses better off. Conservative economists have long argued that revenue from 
“environmental taxes” should be used to reduce other taxes – like income, capital, and corporate 
taxes – that hinder economic activity (Tullock 1967). Others argue that the revenue should be 
returned directly to households to help offset higher prices. 
 
These differences reflect an inherent tradeoff between efficiency and equity when deciding how 
to “recycle” carbon fee revenue back into the economy. In general, reduction of capital and 
corporate taxes maximizes economy-wide efficiency (i.e. GDP growth), while the least-efficient 
recycling option is to return revenue directly to households. But the consequences for equity are 
reversed: reducing taxes on business disproportionately benefits the rich, while a rebate to 
consumers is more likely to benefit low-income households. Reducing taxes on labor generates 
effects somewhere in-between (Williams et al. 2014a). 
 
While conceptually simple, carbon pricing can induce multiple and complex impacts on U.S. 
households. A reduction in economic efficiency might suppress employment and workers’ wages 
in some industries more than others (Ho, Morgenstern, and Shih 2008). Improved local air 
quality or lower long-term climate risk might benefit households in particular places (Jerrett et 
al. 2005). Revenue returned to households through rebates or lower taxes might benefit certain 
demographic groups or regions of the country, depending on the policy design (Metcalf 2007). 
 
This study simulates a “carbon fee and dividend” policy similar to that proposed by the Citizens’ 
Climate Lobby (CCL).3 The policy consists of a $15 per ton of CO2 “fee” (carbon tax) applied to 
domestic fossil fuel production and imports. Exports receive full tax rebates to maintain 
competitiveness of U.S. businesses. All remaining revenue is distributed to households on a 

2 Readers are directed to Metcalf and Weisbach (2009), Marron et al. (2015), and Kennedy et al. (2015) for 
comprehensive reviews of the implementation and administrative details of such a policy. 
3 https://citizensclimatelobby.org/carbon-fee-and-dividend/ 
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modified per-capita basis as a taxable “dividend” (rebate). Specifically, every adult receives a 
full dividend “share” and each child (up to two per household) receives a half share. 
 
Importantly, this analysis is “static” and does not consider “dynamic” effects of a carbon tax on 
economic growth, employment, wages, trade, production processes, or consumption patterns 
over time.4 Nor does it consider local or global environmental benefits. Instead, I calculate the 
short-term financial effect on families, assuming that the policy is implemented “overnight”, 
firms pass the entire carbon fee on to consumers in the form of higher prices, and there is no 
change in behavior, technologies, or emissions. 
 
Under these assumptions, the net effect of the policy for a given household is the difference 
between additional costs due to higher prices and additional disposable income due to the 
dividend. The direct cost (tax burden) of the policy is related to a household’s “carbon footprint” 
– the amount of CO2 emitted as a result of consumption. This includes emissions associated with 
direct consumption of energy (electricity, natural gas, gasoline, etc.) as well as indirect CO2 that 
is emitted during the production of other goods and services (food, electronics, a visit to the 
doctor, etc.). 
 
This basic technique is similar to those employed in prior research, including Metcalf (1999), 
Hassett, Mathur, and Metcalf (2007), Metcalf (2007), Burtraw, Sweeney, and Walls (2009), 
Hassett, Mathur, and Metcalf (2011), and Mathur and Morris (2014). This study differs in the 
level of socioeconomic, demographic, and spatial detail it provides. Household-level impacts can 
be assessed across almost any socioeconomic or demographic dimension, down to the level of 
individual zip codes. I also introduce a number of methodological improvements for estimating a 
household’s carbon footprint and, therefore, its tax burden due to higher consumer prices. 
 
Section 5 describes how I estimate carbon footprints for each of 5.8 million households in a 
representative national sample covering the period from 2008 through 2012. This includes 
techniques to adjust for known under-reporting in household expenditure surveys and variation 
in prices paid for goods and services across households, as well as improvements to input-output 
modeling of carbon tax price impacts. 
 
Section 6 explains how this information is used to simulate the specific carbon fee and dividend 
policy outlined above and determine the net financial gain or loss of each household. Section 7 
presents results across the income distribution, space, and demographic groups. Section 8 
concludes with a discussion of caveats, uncertainties, and policy design options. 

4 Addressing dynamic effects requires a computable general equilibrium (CGE) model of the economy. Examples 
include, among others, Rausch and Reilly (2012) and Williams et al. (2014a; 2014b). 
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5 Estimation of household carbon footprints 

I use an expenditure-based approach to estimate a household’s carbon footprint. This requires 
two pieces of information: 1) total expenditure for each kind of good or service; and 2) an 
estimate of the CO2 emitted per dollar spent on those same goods and services. I refer to the 
latter as the “carbon intensity of expenditure” – denoted by CIE in subsequent formulae – and it 
has units of kgCO2 per dollar. 
 
A household’s carbon footprint is simply expenditure multiplied by CIE, summed across i 
categories of goods and services: 

 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶2 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  ∑ (𝐸𝐸𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖 ∗  𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖)𝑖𝑖   ( 1 ) 

Household-level expenditure by category is available from the U.S. Bureau of Labor Statistics 
(BLS) Consumer Expenditure Survey (CEX). This ongoing survey uses interviews and diaries to 
continually collect expenditure, income, housing, and demographic data for a representative 
sample of American households. It is the primary source of information on how expenditure 
patterns vary across types of goods and services, space, and household characteristics. 
 
However, household expenditure totals in the CEX are consistently lower than those in the 
Personal Consumption Expenditures (PCE) component of the U.S. Bureau of Economic Analysis 
(BEA) national accounts (National Research Council 2013).5 The latter provides aggregate 
household expenditure based on what businesses report to have sold, whereas the CEX provides 
what households report to have purchased. 
 
When expenditure is summed across categories with comparable definitions, CEX totals are 
typically only 75% of PCE – and reporting rates vary widely across different kinds of goods and 
services. Discrepancies between expenditure surveys and national accounts are not uncommon. 
While there is no theoretical preference for one over the other, there are good practical reasons to 
prefer PCE as the accurate measure in rich countries (Deaton 2005). 
 
This matters greatly for carbon footprinting, because the CIE term in Eq. 1 is calculated using 
data and techniques that assume national accounts provide the correct measure of expenditure 
and investment (see Section 5.2). Consequently, addressing the “under-reporting problem” is 
important for accurate analysis of carbon tax incidence.  
 
Estimation of CIE also faces a number of methodological challenges. The standard approach 
(and the approach used here) relies on “input-output” (I-O) tables from the BEA that detail 
monetary flows of commodities to and from industries (Leontief 1953). These tables are used to 
estimate CIE for individual commodities.6 The advantage of “I-O modeling” is that a single 

5 It is also likely that the CEX (like many surveys) underrepresents households at the upper end of the income 
distribution (Sabelhaus et al. 2013). 
6 I believe one of the earliest extensions of I-O modeling to the energy context – from which an extension to 
emissions can then be made – is Herendeen (1973). Kok, Benders, and Moll (2006) provide an excellent overview of 
methodological issues in this area. 
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analytical framework is used to measure all of the inputs (and, therefore, CO2 emissions) 
required to produce a wide range of goods and services. 
 
However, a national I-O model can only provide a national average CIE for each expenditure 
category. In reality, we know that CIE actually varies across households, and a primary reason 
for this is that prices vary across households. 
 
Consider a household in Manhattan (New York City) that spends $2.00 for a 2-liter bottle of 
Coca-Cola. A household in Tulsa, Oklahoma spends only $1.33 for the same product. It is 
reasonable to assume that the real-world carbon footprints of each purchase are not significantly 
different. But using identical CIE for both transactions suggests that the household in Manhattan 
is responsible for 50% more carbon pollution. I refer to this complication – stemming from 
spatial variation in the price of identical products – as the “Manhattan effect”. 
 
Further, consider the purchase of shoes. A pair purchased at Walmart might cost $30, while a 
pair of Gucci luxury brand shoes might cost $600.7 Both transactions are categorized as “Shoes 
and other footwear” for the purposes of Eq. 1. The Gucci shoes may, in fact, have a higher 
carbon footprint than those from Walmart – but probably not 20 times higher, which is what a 
uniform CIE implies. In practice, we expect CIE to vary with household income as wealthier 
households, on average, buy higher-priced versions of otherwise similar items. I refer to this 
complication – stemming from differences in price paid across households within a given 
expenditure category – as the “Gucci effect”.8 
 
Both the Manhattan and Gucci effects suggest that conventional approaches may overestimate 
the carbon footprints of rich households. On the other hand, it is possible that rich households are 
disproportionately responsible for under-reporting of expenditures in the CEX. These two factors 
push in opposite directions – with possibly important distributional consequences. 
 
The following sections describe how I address the issues raised above, specifically 1) adjustment 
of household-level expenditures reported in the CEX to match associated PCE totals and 2) 
calculation and adjustment of national average CIE to account for both the Manhattan and Gucci 
effects. 

5.1 Simulation and adjustment of household expenditures 

The CEX sample size is not sufficient to allow an analysis of this kind at both high spatial and 
high demographic resolution. However, it is possible to use CEX data to simulate household 
expenditure for the U.S. Census Bureau’s much larger American Community Survey (ACS), 
relying on the large overlap in household and geographic variables between the two surveys. 

7 For the record, I (proudly) have no idea what a pair of luxury-brand shoes actually cost. 
8 We can imagine a third effect that we might call the “Hawaii effect” or “Alaska effect”, reflecting the fact that 
prices are higher in some places due to geographic considerations and transportation costs, independent of the 
Manhattan and Gucci effects. In theory, a spatial econometric approach could isolate this effect using the data 
described in Section 5.3, but I leave this for future analysis. 

 4 

                                                        



This type of survey integration is sometimes referred to as “micro data fusion” (Pisano and 
Tedeschi 2014). 
 
The CEX-ACS fusion process was introduced and described by Ummel (2014). The technique 
relies on boosted quantile regression trees – a machine learning strategy – to estimate 
expenditure probability distributions conditional on observable household, climatic, and local 
economic characteristics (e.g. fuel prices). In conjunction with an algorithm to generate random 
uniform variates that exhibit observed correlation across spending categories (Schumann 2009), 
it is possible to simulate an expenditure dataset that preserves both micro and macro patterns in 
the original CEX data. Readers are directed to the original paper for details.9 
 
This study takes the fused CEX-ACS dataset as its starting point. It contains inflation-adjusted 
expenditures (2012 dollars) for nearly 6 million households across 48 different expenditure 
categories over the period from 2008 through 2012, along with the complete set of household-
level variables inherent to the ACS. The main extension in this paper is to adjust expenditures for 
the aforementioned discrepancy between CEX and PCE expenditure totals (i.e. under-reporting 
problem). 
 
I rely on a comparison of CEX and PCE totals across comparable expenditure categories carried 
out by BLS and BEA staff.10 It provides the ratio of CEX-to-PCE expenditure (“reporting ratio”) 
for each category. Expenditures for rent, utilities, vehicle purchase, gasoline, and communication 
services (e.g. phone service) are all reported quite accurately. Outside of these categories, the 
aggregate reporting ratio for 2014 was just 53%.  
 
To understand why this is problematic, consider the example of expenditures for meals 
consumed outside the home (i.e. fast food and restaurants). The reporting ratio is about 60%. I-O 
analysis produces a CIE for restaurants (kgCO2 per dollar of expenditure) based on total PCE 
expenditure for the category (see Section 5.2). If the CIE is applied to unadjusted CEX 
expenditure, it will underestimate total emissions from eating out by 40%. 
 
To make matters worse, reported restaurant expenditure increases disproportionately with 
household income. Indeed, this is true of many of the categories with low reporting ratios. 
Without any adjustment, Eq. 1 will not only underestimate total restaurant emissions, it will 
disproportionately under-estimate emissions among rich households (assuming the rich report as 
accurately as the poor). 
 
Clearly, it is necessary to adjust CEX expenditure upwards to match PCE totals and create 
compatibility with CIE derived from I-O tables. However, absent detailed survey data comparing 
household reported expenditure to actual expenditure (something that is very difficult to do), 
there is no way of knowing if the likelihood and/or magnitude of under-reporting is related to 
household demographics (e.g. income). 
 

9 http://www.cgdev.org/publication/who-pollutes-household-level-database-americas-greenhouse-gas-footprint-
working-paper 
10 http://www.bls.gov/cex/cecomparison.htm 
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Consequently, I assume that under-reporting is uniform across the population. For each category, 
CEX expenditure for all households is divided by the category-specific reporting ratio. The net 
effect is to disproportionately increase expenditure among the rich – but only because the rich 
disproportionately consume those categories where BLS/BEA analysis suggests under-reporting 
is most significant.11 
 
To check that the adjustment for under-reporting produces plausible total expenditure, I compare 
aggregate PCE with aggregate (adjusted) expenditure in the household sample. Since the two are 
not directly comparable as is, I subtract-out the following PCE components from the national 
accounts data: 
 

• Imputed rental of owner-occupied nonfarm housing 
• Rental value of farm dwellings 
• Health care 
• Health insurance 
• Pharmaceutical and other medical products 
• Final (net) consumption expenditures of nonprofit institutions serving households 

 
For 2012, this leaves $7.2 trillion in the remaining PCE categories. I compare this figure with 
under-reporting-adjusted total expenditures in the household sample, excluding Health insurance, 
Drugs, Medical services, and Medical supplies, and Cash contributions. The resulting total 
expenditure is $7.17 trillion. Whether the adjustment procedure generates the correct distribution 
of expenditures remains an open question, but it does produce overall spending in agreement 
with the national accounts. 

5.2 Input-output modeling of national CIE 

The data and techniques used here to estimate national CIE across expenditure categories are 
similar to those employed by Fullerton (1996), Metcalf (1999), and others.12 My approach is 
most similar that of Perese (2010), and readers are directed to that paper for technical and 
mathematical details.13 This section describes where, why, and how I modify the conventional 
approach, and I assume the reader is familiar with the basics of I-O modeling.14 
 

11 Cross-country analysis shows that the ratio of total household survey expenditure to total national account 
expenditure declines with rising income (Deaton 2005). If this observed pattern between countries were to hold 
within the U.S. – implying that rich households disproportionately under-report expenditures – then my assumption 
of uniform under-reporting across households will underestimate spending among the rich. 
12 Strictly speaking, the analyses cited do not estimate CIE directly but, instead, estimate commodity relative price 
changes for a given carbon price. Mathematically, these are two sides of the same coin and analogous for our 
purposes. 
13 https://www.cbo.gov/sites/default/files/111th-congress-2009-2010/workingpaper/2010-04-io_model_paper_0.pdf 
14 In short, the I-O “framework” or model relies on “Use” and “Make” input tables that describe the monetary flow 
of commodities to and from industries. They report all inputs and outputs associated with the production of goods 
and services. The tables are consistent with one another and with the national account totals for consumption and 
investment across households and government, as well as imports and exports. See UN Statistics Division (1999). 
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Estimation of CIE requires the analyst to pass a “tax matrix” into the I-O framework such that, 
when solved, the system of equations returns a vector of price increases for each commodity. 
These price increases reveal the CIE, given the (static) state of the economy described in the I-O 
tables. Each cell of the tax matrix should contain the revenue to be raised from the use of a given 
commodity by a given industry. 
 
The tax matrix is typically constructed to reflect revenue from energy-related CO2 emissions for 
the year in question. However, this omits carbon embedded in fuel exports. Fossil fuel inputs 
(e.g. crude oil) used to produce fuel exports (e.g. fuel oil) are to be taxed at the well, mine 
mouth, or border, but the associated carbon is not reflected in energy-related emissions since it 
remains embedded in fuel sent abroad. 
 
To correct for this, I remove fuel exports from the Make and Use tables. I adjust all intermediate 
inputs to the respective industries proportionally, reflecting the share of fuel exports in total 
industry output. This reduces total output of fossil fuel commodities in the I-O framework to 
account for emissions embedded in fuel exports. 
 
In practice, earlier research probably did not suffer too much from this omission, because U.S. 
fuel exports were relatively small. But fuel exports in the post-2008 period are not negligible. 
This is most pronounced in the case of petroleum product exports containing almost 500 MtCO2 
of embedded carbon in 2012 (coal exports were also significant in CO2 terms). 
 
It is also necessary to distribute the revenue in the tax matrix across specific commodity-industry 
cells. Typically, revenue is allocated across industries in proportion to input value, assuming that 
ad valorem tax rates are constant for a given fossil fuel commodity. However, in practice input 
prices can vary considerably across industries. 
 
I address this, in part, by integrating U.S. Energy Information Administration (EIA) data on the 
amount of CO2 emitted, by fuel, in the “Electricity” and “Other” sectors. This allows me, for a 
given fossil fuel, to assign one ad valorem tax rate for the power sector and one rate for all other 
users. In the case of coal, for example, this leads to larger ad valorem rates in the electricity 
sector compared to industrial users, presumably reflecting lower input prices for the former. 
 
Unlike Perese (2010), I do not explicitly include rebates for carbon sequestered through non-
combustive use of fuel (asphalt, lubricants, etc.). Technically, the CCL proposal would provide 
such rebates. However, since the size of the tax passed into the I-O model purposefully excludes 
sequestered CO2, the model captures the aggregate effect of such an adjustment but ignores 
differential effects across industries. Ideally, future work would include sequestered CO2 in the 
tax matrix alongside explicit rebates in the I-O framework per Perese (2010). 
 
I multiply commodity-specific CIE values from the I-O model across all final uses in the Use 
table to calculate the total carbon associated with each commodity and end use. This effectively 
assumes that nonfuel imports have the same carbon-intensity (and, therefore, face the same tax 
rate) as domestically-produced counterparts. This is a common assumption in such analyses and 
could well reflect real-world border tax adjustments under unilateral carbon pricing (Metcalf and 
Weisbach 2009). 
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In the case of fuel imports and exports, I calculate the associated carbon separately by integrating 
additional data on physical quantities of fossil fuel produced, imported, and exported in 
conjunction with CO2 emission factors from the Environmental Protection Agency (EPA).15 I 
find that the fuel import and export emissions implied by the I-O model do not consistently 
replicate the quantities calculated from physical fuel data. This may be due to differences in 
prices or other issues specific to the treatment of imports and exports in the BEA data. This is an 
area where additional work in needed. I assume that the fuel import and export emissions derived 
from physical fuel quantities are correct. 
 
The remaining departure from previous research concerns the level of detail used in the I-O 
model itself.16 The BEA provides “benchmark” I-O tables every five years that contain detailed 
data for almost 400 commodities and industries (most recently for 2007). Annual “summary” 
tables contain analogous data for an aggregated set of about 70 commodities and industries 
(currently through 2014). Typically, researchers face a tradeoff between detail and timeliness, 
and all previous research has relied on the comparatively coarse product detail of the summary-
level tables. 
 
It is possible, however, to use the 2007 benchmark data to “expand” each cell of a summary year 
table. This results in new Make and Use tables for non-benchmark years that have the product 
detail of the benchmark tables but retain cell values consistent with the summary-level tables. 
Since this process can result in discrepancies in commodity and industry total output across the 
Use and Make tables, I use an iterative proportional fitting procedure (i.e. “matrix raking” or 
“RAS algorithm”) to adjust cell values and achieve identical margins across the two tables.17 I 
employ an analogous process to create detail-level versions of the PCE bridge matrices. 
 
Using the expanded I-O tables, I compute CIE for each BEA commodity and year from 2008 
through 2012. The expanded PCE bridge matrices are used to calculate CIE for more than 200 
PCE categories. Finally, CIE is calculated for 46 expenditure categories contained in the fused 
CEX-ACS dataset, using a cross-walk provided by BLS and BEA that links CEX expenditure 
line item codes to PCE categories. National CEX expenditure at the line-item level is used to 
weight the relative contribution of different PCE categories in the calculation of final CIE for 
each expenditure category. 
 
 
 

15 Both energy-related CO2 emission and physical fuel quantity data come from EIA’s Monthly Energy Review 
(http://www.eia.gov/totalenergy/data/monthly). Emission factors are from the EPA 
(http://www.epa.gov/energy/ghg-equivalencies-calculator-calculations-and-references). 
16 I utilize the BEA Make and Use tables, in producer prices and after redefinitions, at both the summary and 
benchmark level of detail along with the commodity-PCE bridge data. For an introduction to the BEA Industry 
Accounts, see Streitwieser (2009). 
17 Every carbon tax analysis using summary-level BEA I-O tables must take analogous steps to, at a minimum, 
disaggregate the “Coal mining” industry from the aggregated “Mining, except oil and gas” industry. The technique 
used here is simply a systematic extension of this process to the rest of the matrix. 
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5.3 Modeling spatial variation in prices 

As indicated above, variation in consumer prices poses a challenge when computing household 
carbon footprints from expenditures alone. Previous analyses of CEX data in the context of 
carbon pricing and/or footprinting have ignored this fact. In order to account for both the 
Manhattan and Gucci effects, it is necessary to specify how prices for different kinds of goods 
vary across the country. 
 
I rely on a proprietary dataset of consumer prices provided by the Council for Community and 
Economic Research (C2ER).18 The C2ER data used here provides reported consumer prices for 
53 individual goods and services (referred to here as “items”) for the period 2008 through 2012 
and for nearly 400 urban areas. These data indicate, for example, the retail price of a gallon of 
regular gasoline or a 2-liter bottle of Coca Cola. 
 
The C2ER data generally report consumer prices excluding state and local sales tax. However, 
prices for gasoline, beer, and wine include federal and state excise taxes paid by producers, and 
gasoline additionally includes sales tax when applicable. 
 
Reported retail prices for gasoline, beer, and wine are first stripped of their sales and excise tax 
components. Per-gallon excise and applicable sales taxes for gasoline come from the American 
Petroleum Institute’s motor fuel tax reports.19 Excise taxes for beer and wine come from the Tax 
Foundation.20 This step removes spatial variation in prices due to differences in state tax policy. 
The resulting “tax-free” prices reflect the underlying cost of production, transport, and wholesale 
and retail trade margins for a given location. 
 
For each item and year, I spatially interpolate observed prices using zip-code level data as 
regressors in a universal Kriging model. The zip-code level regressors include a measure of 
typical per-capita income created by combining information from multiple ACS five-year (2010 
through 2014) estimate tables, along with population density and typical home value provided by 
Zillow Real Estate Research.21 
 
Following spatial interpolation of tax-free prices, applicable sales and excise tax for each item is 
added to arrive at the tax-inclusive retail price in each zip code.22 Combined state and local sales 
tax rates for each zip code come from Avalara.23 Exclusion of certain items from the sales tax 
base is determined using guidance on state-specific exclusions of food and drugs from the 
Federation of Tax Administrators.24 

18 https://www.coli.org 
19 http://www.api.org/Oil-and-Natural-Gas-Overview/Industry-Economics/Fuel-Taxes 
20 http://taxfoundation.org/tax-topics/alcohol-taxes 
21 http://www.zillow.com/research/data/ 
22 There is no dominant, large-scale spatial pattern underlying sales tax rates. While there is significant intra-state 
variation due to taxes imposed by local municipalities in addition to the statewide rate, there is effectively zero 
overall correlation (-0.024) between zip code sales tax rate and typical per-capita income. This suggests that explicit 
consideration of sales tax leads to place-specific (and somewhat random) adjustments to CIE rather than systematic 
adjustments along spatial or demographic lines. 
23 http://salestax.avalara.com 
24 http://www.taxadmin.org/assets/docs/Research/Rates/sales.pdf 
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The prevailing, tax-inclusive price in a given zip code (𝑝𝑝𝑖𝑖) may differ from the effective 
consumer price – i.e. the average price actually paid by residents (𝑃𝑃𝑖𝑖). This is most pronounced 
for locales and items where tax rates vary significantly across political borders (e.g. gasoline 
prices across state borders). I assume that the effective price in a given zip code resembles an 
average of local prices within some radius of residents’ homes. 
 
To capture this effect, I convert the polygon zip code data to a raster grid and, for each cell, item 
and year, calculate the effective consumer price as the weighted mean price within 40 km (25 
miles) of each grid cell. For cell k with j cells at distance 𝑑𝑑𝑗𝑗 and local population25 𝑦𝑦𝑗𝑗, the 
effective price 𝑃𝑃𝑘𝑘 is the weighted mean of local prices 𝑝𝑝𝑗𝑗 such that 

 𝑃𝑃𝑘𝑘 =
∑ 𝑝𝑝𝑗𝑗𝑤𝑤𝑗𝑗𝑗𝑗

∑ 𝑤𝑤𝑗𝑗𝑗𝑗
   where   𝑤𝑤𝑗𝑗 = 𝑦𝑦𝑗𝑗

1+𝑑𝑑𝑗𝑗
 ( 2 ) 

For each item and year, the effective price in zip code 𝑖𝑖 is then simply the population-weighted 
mean of associated grid cells k: 

 𝑃𝑃𝑖𝑖 = ∑ 𝑃𝑃𝑘𝑘𝑦𝑦𝑘𝑘𝑘𝑘
∑ 𝑦𝑦𝑘𝑘𝑘𝑘

 ( 3 ) 

For each item and year, the effective price in zip code 𝑖𝑖 is then divided by the population-
weighted mean national price for the item in question (𝑃𝑃�), giving a ratio 𝑅𝑅𝑖𝑖 defined by: 

 𝑅𝑅𝑖𝑖 = 𝑃𝑃𝑖𝑖
𝑃𝑃�

= 𝑃𝑃𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
∑ 𝑃𝑃𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖

 ( 4 ) 

Each of the items are then assigned to a CEX Universal Classification Code (UCC; line-item 
code) and one of 11 categories: Alcohol, Apparel, Consumer goods, Dairy, Fast food, Fruits and 
vegetables, Gasoline, Health care, Meat and eggs, Other food, and Services. For each category, a 
weighted relative price index is calculated (𝑉𝑉𝑖𝑖), where the 𝑛𝑛 associated item weights are equal to 
total U.S. expenditure for the associated UCC code (𝐸𝐸𝑛𝑛): 

 𝑉𝑉𝑖𝑖 = ∑ 𝑅𝑅𝑖𝑖𝐸𝐸𝑛𝑛𝑛𝑛
∑ 𝐸𝐸𝑛𝑛𝑛𝑛

 ( 5 ) 

The variable 𝑉𝑉𝑖𝑖 is computed for each year from 2008 through 2012 and measures relative 
differences in price levels across zip codes. A value of 𝑉𝑉𝑖𝑖 = 1 indicates parity with national 
average prices for the category in question. 
 
Figures 1-3 show the resulting zip-code level relative price indices for the Gasoline, Fruits and 
vegetables, and Services categories for the year 2012. In the case of gasoline, the differences 
largely reflect variation in state excise tax. But for Fruits and vegetables and Services, the 
patterns reflect other economic forces. 
 

25 Grid-cell population provided by: http://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density 
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Finally, for the purposes of subsequent analysis that integrates price index data with the fused 
CEX-ACS dataset, it is necessary to aggregate the zip code level results to the level of Public 
Use Microdata Areas (PUMA’s). This is accomplished using a linkage between zip codes and 
PUMA’s provided by the Missouri Census Data Center’s MABLE/Geocorr12 system and 
constructing a population-weighted mean index value for each PUMA.26 

Figure 1 - Gasoline price index (2012) 

 

26 http://mcdc.missouri.edu/websas/geocorr12.html 
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Figure 2 - Fruits and vegetables price index (2012) 

 
 

Figure 3 - Services price index (2012) 
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5.4 Adjusting CIE for Manhattan and Gucci effects 

With the price index data developed above, adjusting CIE for the Manhattan effect is 
straightforward. For a given expenditure category, the local CIE in PUMA m is simply: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚 = 𝐶𝐶𝐶𝐶𝐶𝐶�����

𝑉𝑉𝑚𝑚
 ( 6 ) 

where 𝐶𝐶𝐶𝐶𝐶𝐶����� is the national average CIE derived from the I-O analysis in Section 5.2. That is, the 
local CIE results from adjusting national average CIE up (down) in places with below-average 
(above-average) prices. 
 
However, adjusting for both the Manhattan and Gucci effects is more complicated. The Gucci 
effect implies that the average price paid for otherwise-similar products (i.e. products within a 
given expenditure category) varies with household characteristics – particularly income. To 
estimate the size of this effect, I analyze patterns in physical consumption and expenditure across 
different types of food. 
 
The CEX contains no information on physical quantities consumed (for food or otherwise), but 
the National Health and Nutrition Examination Survey (NHANES) contains a dietary interview 
in which participants recall physical quantities of food eaten over a two-day period.27 Physical 
quantities are categorized and converted to nutrient intake values (e.g. calories consumed) using 
the USDA’s Food and Nutrient Database for Dietary Studies. Participants also provide 
demographic information (income, age, education, etc.) for both themselves and the head of 
household. 
 
I pool the NHANES dietary component from the 2007-2008, 2009-2010, and 2011-2012 rounds, 
providing a total sample of 23,476 individuals. Individual foods and beverages are assigned to 
one of the ten food and drink categories created in the fused CEX-ACS dataset. This includes a 
category for food of all types consumed outside the home (i.e. fast food, restaurants), constructed 
from NHANES information on where individuals sourced their meals. 
 
I model total calories consumed and the share of calories from each of the ten food categories as 
a function of respondent age, household income, household size, as well as the age, sex, 
education level, and race of the head of household. All of these independent variables are also 
observable in the CEX. The statistical procedure utilizes boosted (mean) regression tree models; 
8-fold cross-validation is used to determine the optimal number of regression trees, as 
determined by minimizing the average root-mean-squared error across the folds. 
 
The fitted models are then used to predict expected (mean) calorie intake for each of the ten food 
categories for each household in the CEX sample. Since this sample also contains reported 
expenditures for the same categories, I am able to estimate cost-per-calorie at the household 
level. Importantly, I first adjust CEX food expenditures to account for spatial variation in prices 
using product-specific price indices from Section 5.3. 
 

27 http://www.cdc.gov/nchs/nhanes.htm 
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Figure 4 shows how the mean cost-per-calorie changes across the income distribution (relative to 
the national average) for each of the ten food categories. Three of the categories – Food away 
from home, Alcoholic beverages, and Nonalcoholic beverages – exhibit comparatively steep 
gradients with respect to income. This makes sense, to the extent that up-scale or luxury versions 
of these products are widely available (e.g. sit-down restaurants, high-end wine and coffee). 

Figure 4 - Estimated Gucci effect for food and drink categories 

 
 
 
The other categories exhibit more muted gradients, but the variation across the income 
distribution is still significant. These results suggest that for most classes of grocery items a 
household at the 90th percentile of the income distribution (measured relative to the Federal 
Poverty Level) spends, on average, ~40% more per calorie than the typical (median) household 
and ~75% more than a household at the 10th percentile – even after controlling for local price 
levels. 
 
Part of this variation is explained by non-income factors like education that exert a strong 
influence on food choices. Using a boosted regression tree model, I isolate the marginal effect of 
income on cost-per-calorie, controlling for the education, age, and race of the household head 
and then average the marginal effect across all food categories that do not exhibit exceptionally 
steep gradients. The black dotted line in Figure 4 shows the resulting relationship. 
 
This curve describes the generic relationship between household income and average cost-per-
calorie relative to the national average controlling for local price levels and non-income 
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household characteristics. In other words, it is a measure of the degree to which richer 
households buy more expensive versions of otherwise-similar calories. I refer to it here as the 
“generic Gucci effect”, and I assume that this relationship holds across all applicable expenditure 
categories outside of food and drink.28 Using the information in Figure 4, it is possible to 
estimate a Gucci effect ratio (G) for individual expenditure categories and households in the 
fused CEX-ACS sample. 
 
I rely on food consumption and expenditure data to estimate the Gucci effect, because it is the 
only consumption class for which physical quantities are readily available using open-source 
data. Given that there are physical limits to the amount of food and drink that a person can 
consume, it may constitute a class of goods where richer households disproportionately opt for 
quality (i.e. higher-priced calories) over quantity. On the other hand, one can imagine other 
goods (e.g. vehicles, appliances, clothing) where demand for social status or conspicuous 
consumption might lead to even stronger Gucci effects than observed for food. 
 
Recent research using detailed, proprietary consumer data suggests that the Gucci effect is 
comparatively muted (but still apparent) in the case of a low-cost, ubiquitous commodity like 
toilet paper (Orhun and Palazzolo 2016). The only other attempt I am aware of to account for 
variation in effective prices is a footprinting study by Girod and De Haan (2010) of Swiss 
households. They find that households in the upper-half of the income distribution do pay higher 
average price-per-unit for many types of goods compared to households in the lower half. 
Interestingly, the price premium for food is not exceptional – and actually smaller than that 
observed for things like vehicles and electronics.  
 
The strength of the Gucci effect clearly varies across categories and is influenced by more than 
just household income, so the generic relationship assumed here is necessarily a rough 
approximation in the absence of more and better data. That said, ignoring the effect entirely – as 
almost every previous footprinting or carbon tax study has done – seems far less defensible. 
 
A simple adjustment to CIE might consist of including G in the denominator of Eq. 6. However, 
as mentioned earlier, it is possible that higher-price products and services are, in fact, more 
carbon-intensive than lower-price alternatives.29 Exactly how much more is unclear and probably 
not knowable outside of extremely detailed, item-specific expenditure surveys coupled to life-
cycle analyses. 
 
A practical (if simplistic) approach is to assume that variation in G is due entirely to differences 
in trade margins. That is, Gucci and Walmart shoes are effectively identical at the factory gate, 
and the difference in consumer price is due to (much) higher transport, wholesale, and retail 
margins in the case of the former. 
 
Under this assumption, for a given expenditure category and household located in PUMA m, the 
fully-adjusted CIE is a function of the predicted generic Gucci ratio G (based on the household’s 

28 Utility, gasoline, air travel, and public transportation expenditure categories are excluded from the Gucci effect 
adjustment, because premium or luxury versions of these goods are limited (e.g. air travel generally offers only two 
classes; gasoline comes in a limited number of grades) or simply unavailable. 
29 A relevant exception here is organic food, which may have both a lower carbon footprint and higher price. 
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observed income), the local price index (𝑉𝑉𝑚𝑚), the share of trade margins in total purchaser price 
(𝑆𝑆𝑡𝑡) and the national average CIE for the production and trade margin components (𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝������ and 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡������, respectively).30 

 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚 = (𝑉𝑉𝑚𝑚𝐺𝐺)−1�(1 − 𝑆𝑆𝑡𝑡)𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝������ + (𝑆𝑆𝑡𝑡 + 𝐺𝐺 − 1)𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡������� ( 7 ) 

5.5 Calculation of fuel-specific CIE 

In the case of electricity, the EPA eGRID dataset provides total CO2 emissions and electricity 
generation for 26 power grid sub-regions in year 2012.31 I also include an adjustment for 
transmission and distribution losses between generators and consumers.32 Using spatial data on 
the boundaries of the eGRID subregions, I am able to estimate the carbon intensity of electricity 
supply for each household in the fused CEX-ACS sample (Figure 5). 

30 In the case of services, the I-O accounting makes no formal distinction between production and trade margin 
components. However, the logic used for goods is, arguably, still applicable to services. For example, restaurants 
procure, refrigerate, and cook raw ingredients in basically similar ways regardless of the establishment type (akin to 
the “factory gate” in the case of goods), but they may differ widely in terms of rent, marketing, or staffing 
levels/salaries (trade margins). Consequently, for all services I assume that 𝑆𝑆𝑡𝑡 is 33% and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡������ is equal to 50% of 
the I-O overall CIE, consistent with values generally observed for goods. 
31 http://www.epa.gov/energy/egrid 
32 The eGRID-derived emission factors do not account for inter-regional electricity flows that could impact the true 
GHG-intensity of electricity consumed. Up to 30% of electricity consumed in some grid sub-regions originates 
elsewhere, but there is currently no simple way to account for these flows (Diem and Quiroz 2012). 
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Figure 5 - Carbon intensity of electricity supply (2012) 

 
 
The EIA’s State Energy Data System (SEDS) provides information on average residential retail 
energy prices, by state and year.33 Combined with the eGRID emission factor data, this allows 
one to estimate local CIE assuming state average electricity prices. There is no need to rely on 
CIE from the I-O model in the case of electricity. 
 
However, we know that a given household’s actual CIE for electricity could be significantly 
lower or higher than the average. This is due to the fact that households face different effective 
price-per-kWh. A household that reports $100 of monthly electricity expenditure does not 
necessarily consume twice as much electricity as a household that reports $50 of expenditure (as 
implied by identical price-per-kWh). Both fixed monthly costs and tiered pricing impact the 
relationship between total expenditure and effective price – and, ultimately, CIE. 
 
In an attempt to account for this, I utilize the most recent round (2009) of the EIA’s Residential 
Energy Consumption Survey (RECS) to analyze how the effective price-per-kWh varies with the 
level of electricity expenditure in different parts of the country (N = 12,083 households).34 The 
RECS is a unique data source for this kind of analysis, since it reports household energy 
expenditure and physical quantity consumed based on actual utility bills. 
 
The location of each household in the RECS is disclosed at the level of 27 geographic regions. 
Larger states are assigned their own region; smaller states are grouped together. I calculate the 

33 http://www.eia.gov/state/seds/ 
34 http://www.eia.gov/consumption/residential/ 
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ratio of each household’s actual price-per-kWh to the population-wide mean price in the same 
region. I then fit a boosted (mean) regression tree model to predict a household’s “price ratio” as 
a function of electricity expenditure, region, household income, primary heating fuel, and 
poverty status. 
 
If all households in a region face identical electricity pricing structures, then we expect none of 
the independent variables other than electricity expenditure and region to help predict the price 
ratio. In practice, the other independent variables help control for intra-region variation in the 
price of electricity (i.e. on average, rich households live in places where electricity prices are 
higher) and low-income cost assistance programs (i.e. households in poverty that heat with 
electricity may receive government support). 
 
Figure 6 shows the marginal average effect of electricity expenditure (reported as a region-
specific percentile) on a household’s electricity price ratio, for each of the 27 regions. This plot 
shows how the relative effective price-per-kWh changes depending on a household’s position in 
the electricity expenditure distribution. 
 
In general, low-expenditure households in a given region pay more per-kWh (reflecting fixed 
monthly costs), as do the highest-expenditure households (reflecting tiered rate structures with 
increasing marginal cost). The lowest price-per-kWh is often paid by households in the middle of 
the distribution. A notable exception is California, where public-owned utilities pair low fixed 
monthly costs with aggressive tiered pricing.35 Consequently, the average price-per-kWh in 
California (as reported in SEDS, for example, and denoted by the dashed line in Figure 6) is 
considerably higher than the effective prices paid by most Californian households. 

35 https://energyathaas.wordpress.com/2014/11/03/whats-so-great-about-fixed-charges/ 
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Figure 6 – Mean relative electricity price, by state/region (based on 2009 RECS) 

 
 
The information in Figure 6 and the underlying models is critical for accurate adjustment of CIE 
to account for region-specific pricing structures. I use the fitted models to predict household-
level electricity price ratio in the fused CEX-ACS dataset and then adjust the initial CIE estimate 
to reflect this information. A similar adjustment is made for natural gas, though I rely on the 
initial CIE estimate from the I-O model. 
 
In the cases of heating oil and LPG, I use state-level residential prices from the EIA to adjust the 
national average CIE. Since this could lead to erroneous values (primarily because the I-O 
analysis CIE for these fuels will reflect all uses – not just residential), I include a further, final 
adjustment to ensure that total residential CO2 emissions from these fuels match totals reported 
by the EIA. 
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6 Simulation of carbon fee and dividend policy 

The simulated policy imposes a $15 per ton CO2 carbon fee on all domestic fossil fuel extraction 
and imported fuels and goods. I calculate that the average annual carbon tax base – that is, the 
total amount of CO2 assumed subject to taxation – was 7,810 MtCO2 per year over the period 
from 2008 through 2012.36 Assuming a static economy and no response to the tax, this yields 
annual gross revenue of $117 billion for simulation purposes. 
 
About 20% of gross revenue is used to finance carbon tax rebates for businesses exporting goods 
abroad or using fossil fuel for non-combustive uses (see Section 6.1). The remaining ~80% is 
returned to households in the form of a taxable “dividend”. The revenue is disbursed to 
households, assuming that each adult receives a full dividend “share” and each child (up to two 
per household) receives a half share. 
 
A measure of “net financial benefit” (NFB) is calculated for each household in the sample. Given 
a pre-tax dividend (D), marginal income tax rate (M; see Section 6.2 below), effective CO2 
footprint (Z), and a nominal carbon tax rate of $15 per ton CO2 (T=15), a household’s NFB is 
given by: 

 𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐷𝐷(1 −𝑀𝑀) − 𝑍𝑍𝑍𝑍 ( 8 ) 

In the context of carbon pricing, revenue and CO2 emissions are analogous. The tax burden for a 
given entity – assuming that the tax is passed entirely on to consumers and there is no 
macroeconomic response to the policy – is proportional to that entity’s carbon footprint. Since a 
primary objective of this study is to assess the balance of costs (i.e. emissions or tax burden) and 
benefits (i.e. dividends) for individual households, it is important to ensure that the “sources and 
sinks” of these flows are fully accounted for. 

6.1 Sources of gross revenue 

Results from the I-O model show that 12.8% of CO2 emissions (and, therefore 12.8% of gross 
revenue in the carbon tax simulation) is attributable to local, state, and federal governments. 
These entities face higher prices when providing public services. In addition, 44% of health care 
services – ostensibly household consumption in PCE accounting – are, in fact, paid by 
governments (primarily through Medicare and Medicaid).37 I calculate that the government-
financed portion of total health sector CO2 emissions averaged 201 MtCO2 per year from 2008 
through 2012, equivalent to ~2.6% of gross revenue. All told, governments at all levels 
ultimately finance about 15% of gross revenue. See Table 1 for details. 
 

36 Note that the carbon tax base in this case is considerably larger than conventional production-related or 
“territorial” emissions reported by the EPA and other organizations. The latter reflects only the carbon content of 
fossil fuels combusted within the United States. The carbon tax base, however, also includes emissions associated 
with nonfuel imports, non-combustive use of fuel, and fossil fuel exports (all of which are effectively taxed at the 
point of entry or extraction). Section 5.2 provides additional information regarding measurement. 
37 https://kaiserhealthnews.files.wordpress.com/2014/04/highlights.pdf 
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Another 16.3% of gross revenue is derived from implicit taxation of fuel, goods, and services 
produced for export. This is higher than the result of ~10% reported by Perese (2010) using data 
from 2006. However, given the significant increase in U.S. fuel exports since that time, the 
higher figure seems reasonable. A policy with full border tax adjustments requires that exporters 
receive a rebate equal to the carbon tax embedded in their production costs.  
 
Consequently, I assume that 16.3% of gross revenue is effectively a new cost (an export rebate) 
to be paid by the federal government.38 In addition, I estimate that nearly 4% of gross revenue is 
derived from taxation of carbon sequestered by nonfuel uses of energy (asphalt, petrochemicals, 
etc.). This revenue would also need to be rebated. Together, about 20% of gross revenue is 
directed back to business in the form of tax rebates. 
 
The remaining ~65% of revenue must be sourced from households. However, total 
emissions/costs that can be assigned to households on the basis of actual expenditure amount to 
only 54% of gross revenue. Part of the discrepancy is due to health care. Individuals rarely report 
(or know) the actual value of health care services received. Nor do most report (or know) the 
value of private health insurance premiums paid by employers. Based on the I-O model results, I 
estimate that private, nongovernment provision of health care is the source of ~3.3% of gross 
revenue. 
 
I assume this cost is evenly distributed across the non-Medicare and non-Medicaid population. I 
make a rough estimate of participation in these programs on the basis of head-of-household age 
and household income relative to the Federal Poverty Level (133% being the general threshold 
for Medicaid eligibility). This effectively assumes that privately-insured individuals pay 3.3% of 
gross revenue through higher health insurance premiums, imposing an average cost of $19 per 
person. 
 
Another 7.5% of gross revenue is attributable to taxation of fixed private investment – that is, 
construction of physical structures and purchase of durable equipment by both businesses and 
households.39 There is no agreement on how (or even whether, in some cases) revenue derived 
from fixed capital formation should be allocated to households. In the absence of any preferable 
technique, I assume this cost is distributed across households in proportion to total expenditure. 

38 This is different from the border tax adjustment policy proposed by CCL. CCL proposes to make all exports 
eligible for a rebate except fossil fuel exports. I chose to simulate the more generic rebate policy since it is unclear 
how to assign the cost of the fossil fuel exemption across households (if at all). Additionally, CCL proposes the use 
of a separate government account where revenue from taxation of nonfuel imports is deposited and subsequently 
used to pay for rebates on nonfuel exports. Based on the I-O model output, I suspect that this account would 
generate a small positive balance. 
39 From BEA NIPA Handbook (https://www.bea.gov/national/pdf/NIPAhandbookch6.pdf): “Private fixed 
investment (PFI) measures spending by private businesses, nonprofit institutions, and households on fixed assets in 
the U.S. economy. Fixed assets consist of structures, equipment, and software that are used in the production of 
goods and services. PFI encompasses the creation of new productive assets, the improvement of existing assets, and 
the replacement of worn out or obsolete assets.” 
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Table 1 - Sources of gross carbon tax revenue (based on avg. annual emissions 2008-2012) 

 
MtCO2 Revenue, $B 

($15 per tCO2) 
Percent of 

total 

Households 

Consumption expenditures 4,188 $62.8 53.6% 

Private health care 256 $3.8 3.3% 

Private fixed investment 582 $8.7 7.5% 

Government 
(all levels) 

Consumption and investment 1,003 $15.0 12.8% 

Medicare and Medicaid 201 $3.0 2.6% 

Rebate-eligible 
activities 

Export of fuel and goods 1,270 $19.0 16.3% 

Non-combustive use of fuel 310 $4.8 3.9% 

TOTAL 7,810 $117.1 100% 

6.2 Dispersal and taxation of dividend 

The dividend is treated as fully taxable income at the federal level, and I assume that all 
households in the fused dataset receive a dividend and pay federal income tax. The policy has no 
impact on state income taxes. In reality, details of the rebate mechanism(s) could have significant 
practical and distributional consequences, both for welfare and tax revenue. Dinan (2012) and 
Stone (2015) provide excellent overviews of the relevant issues and concerns. For the purposes 
of this study, details of the rebate mechanism itself are ignored. 
 
Each household pays a portion of the rebate back to the federal government, reflecting the 
household’s marginal income tax rate. I estimate the marginal rate of each household using 
results from the Urban-Brookings Tax Policy Center Microsimulation Model.40 The assumed 
relationship between household income percentile and marginal tax rate is given in Figure 7. 
This assumption results in about 18% of the gross dividend returning to the federal government 
as income tax revenue. 

40 http://www.taxpolicycenter.org/numbers/displayatab.cfm?Docid=2503 
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Figure 7 - Assumed relationship between household income and marginal tax rate 

 

6.3 Impact on government budget 

The simulation results in a net cost to government of $1.1 billion. Given the allocation of the 
dividend across households and the assumed marginal tax rate relationship with income, about 
18% of the gross dividend is recouped by the federal government as income tax revenue. This 
generates revenue of $17 billion, but the tax burden imposed on government through higher 
prices is $18.1 billion, leaving a $1.1 billion shortfall.41 It should be noted (again) that this 
analysis does not consider any dynamic effects of the policy on macroeconomic outcomes. 
 
This simulation suggests that the increase in government spending due to higher prices is equal 
to ~20% of the (net) revenue remaining after export and non-combustive fuel rebates are paid out 
($18.1B / $93.3B = 19.4%). This is the portion of revenue that must be either retained or 
recouped in some way to maintain revenue neutrality across all levels of government. It also 
happens to be similar to the effective tax rate on the household dividend given CCL’s rebate 
formula, resulting in a comparatively small overall budget impact. 
 
It is worth noting how this budget calculation differs from that of the Congressional Budget 
Office (CBO) when “scoring” indirect tax legislation, including carbon pricing. For budgetary 
purposes, the CBO reduces the expected indirect tax revenue by a 25% “offset” to account for 

41 The simulated increase in public outlays reflects all levels of government (federal, state, and local), since the 
expenditures and carbon-intensity of each are captured in the underlying I-O tables. In practice, the federal 
government would need to return some of the recouped revenue to the states to cover increased local costs. 
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the loss of federal tax revenue from other sources (Stone, Horney, and Greenstein 2008). In 
effect, the offset assumes that the indirect tax is passed entirely “backward” onto capital and 
labor and that the effective tax rate on corporate and personal income is about 25%.42 
 
If one instead assumes that the tax is passed entirely “forward” into consumer prices (as done 
here), a 25% offset is likely higher than needed to maintain budget neutrality. The CBO itself 
acknowledges this (CBO 2009; footnote 4), and the results here offer some confirmation. 
 
But an implicit tradeoff is at work: If the tax is assumed to be borne by capital and labor (i.e. 
passed “backward”), then the gross tax burden on households is less regressive but only 75% of 
the revenue is ostensibly available to finance rebates or other politically-appealing projects. 
Conversely, if the tax is assumed to be passed “forward” into consumer prices, the offset 
required for budget neutrality is arguably lower (perhaps 20%) but the household tax burden is 
more regressive in the first place. 

42 The income-weighted effective tax rate implied by the curve in Figure 7 is, indeed, 25%. The lower effective tax 
rate of 18% in the case of the CCL proposal is due to the dividend allocation formula disproportionately benefitting 
poorer households with lower marginal tax rates. 
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7 Results 

When assessing the results presented below, it is important to remember that this analysis is 
“static” and does not consider “dynamic” effects that a carbon tax would have on economic 
growth, employment, wages, trade, or consumption patterns over time. Nor does it consider local 
or global environmental benefits. Instead, I calculate the short-run financial effect on families, 
assuming that the policy is implemented “overnight” with 100% pass-through of the tax into 
consumer prices, no change in household behavior, and no change in production processes, 
technologies, or emissions. 
 
Throughout this section, a household is said to be “benefited” by the policy if it experiences a 
positive net financial benefit (NFB) given the assumptions and limitations noted above. I also 
report results for those households that incur a “minor loss”, defined as a net financial loss that 
does not exceed 0.2% of pre-tax household income. 
 
The policy’s $15 per ton CO2 carbon fee generates annual revenue of $117 billion for the 
purposes of the simulation. About 20% of gross revenue is used to finance carbon tax rebates for 
businesses exporting goods abroad or using fossil fuel for non-combustive uses. The remaining 
80% ($93 billion) is returned to households in the form of a taxable “dividend”, assuming that 
every adult receives a full dividend “share” and each child (up to two per household) receives a 
half share. 
 
This amounts to a pre-tax dividend of, on average, $811 per household ($323 per person) at 
current emission levels.43 Given the assumed marginal tax rate relationship with income (Section 
6.2), the average after-tax dividend – that is, the increase in disposable income due to the rebate 
– amounts to $664 per household ($264 per person). 

7.1 Costs and benefits across the income distribution 

Overall, 53% of U.S. households (58% of individuals) experience a positive NFB under the 
policy. Figure 8 shows the percentage of households benefited across income quintiles. Each 
quintile contains an equal number of people, ranked according to household income as a 
percentage of the Federal Poverty Level (FPL).44 Figure 8 also reports the percentage of 
households that incur a minor loss relative to income. 
 
Among households benefited, the typical (median) gain is $192 per household or 0.5% of 
income. Among the 47% of households with a negative NFB, the typical loss is $195 per 
household; since these households tend to have higher incomes, the typical loss as a percentage 

43 All “per-person” results include both adults and children equally in the denominator. Also, the ACS sample 
excludes people living in “group quarters”, which includes correctional facilities, juvenile facilities, nursing homes, 
and health care facilities. Consequently, per-household and per-person results are slightly over-stated. 
44 I use household income as a percentage of FPL to rank households, because the latter incorporates an adjustment 
for household size that better reflects relative economic standing (https://aspe.hhs.gov/poverty-guidelines). 
Percentage of FPL is also often used to determine eligibility for government programs, so distributional effects 
along this dimension have practical policy relevance. 
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of income is less (0.25%). Across all households, the mean NFB is just slightly positive ($7), 
reflecting the fact that the policy, as simulated, results in a small net transfer from government to 
households (Section 6.3). 
 
The policy is highly progressive overall. Eighty-six percent of households in the bottom quintile 
of the income distribution are benefited, compared to just 15% in the top quintile. Among 
households in the bottom quintile, mean net benefit is $280 per household or about 1.8% of 
average household income. Households in the top quintile, on average, experience losses of a 
similar absolute magnitude ($322) but less relative to income (-0.2%). Households in the middle 
of the income distribution (Quintile 3) see a small overall benefit (mean value of $27 per 
household). 
 
Overall, 72% of households experience either a net financial benefit or a minor loss of no more 
than 0.2% of income. The share of households incurring only a minor loss increases rapidly with 
income, reflecting the fact that incomes increase faster than net policy costs as one moves up the 
income scale. 

Figure 8 - Percentage of households benefited, by income quintile 

 
 
Figure 9 shows overall financial effects across income deciles. The size of the after-tax dividend 
(additional disposable income) received by each decile does not vary significantly across the 
income distribution, though it does decline slightly with rising income and higher marginal tax 
rates. Conversely, the tax burden imposed through higher prices for goods and services increases 
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with income. Overall, the net distributional consequences of the policy are largely (but not 
exclusively; see Section 7.3) driven by differences in the exposure of households to carbon 
pricing (i.e. their carbon footprint). 
 
This pattern results in a net transfer of money from upper-income to lower-income households 
(Figure 10). Overall, households in Quintiles 3 and 4 exhibit comparatively small net gains and 
losses, respectively. The primary distributional effect is to shift purchasing power from the top 
quintile to the bottom two quintiles. 

Figure 9 - Total financial cost and benefit, by income decile 
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Figure 10 - Overall net financial effect of policy, by income quintile 

 

7.2 Spatial variation in net benefit 

Figure 11 shows the percentage of households benefited for each of 30,000+ zip codes. A value 
of 50% is represented by white shading in the map. Blue (red) areas are those with higher (lower) 
values.45 Figure 12 reports results across three major community types: rural, suburb or town, 
and urban.46 
 

45 Readers should consult Ummel (2014) for details regarding derivation of zip code-level results from the fused 
CEX-ACS dataset. From that paper: “In order to calculate statistics for alternative geographic regions (e.g. zip codes 
or congressional districts), it is necessary to compute new sample weights that reflect the likelihood of a given 
household being located in a given region. A sample weight ‘raking’ algorithm is employed to assign and re-weight 
households for any given geographic region, using region-specific marginal household counts from ACS and 2010 
Census summary files. This technique ensures that the subsample of households assigned to a given zip code or 
congressional district, for example, reflects the actual distribution of households across income, age, race, housing 
tenure, and household size.” 
46 Results for community types are derived by estimating the dominant type (rural, suburb/town, or urban) for each 
of the 30,000+ zip codes using the “locale codes” spatial dataset developed by the National Center for Education 
Statistics (https://nces.ed.gov/ccd/rural_locales.asp). 
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Figure 11 - Percentage of households benefited, by zip code 

 

Figure 12 - Percentage of households benefited, by community type 
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I do not provide a formal analysis of the drivers of these spatial patterns. However, it is possible 
to surmise three factors that explain at least some of the variation. First, areas with comparatively 
low-carbon electricity tend to fare better (compare with Figure 5 in Section 5.5). Second, 
households in suburban areas tend to fare worse, reflecting higher incomes/consumption and 
carbon footprints (red “hotspots” around urban cores). Third, areas with comparatively mild 
climates tend to do better. 
 
The zip-code level results generally bear out trends hinted at in the state-level CGE modeling of 
Williams et al. (2014b) – namely, that small-scale variation in the distribution of benefits within 
geographic regions or states may well be more important than differences across regions. This is 
consistent with the finding of Ummel (2014) that household carbon footprints rise and then fall 
as one moves outward from urban cores (i.e. a suburban effect). 

7.3 Net benefit across demographic groups 

This section presents results by age group, household type, and race. 
 
Figure 13 reports net effects across five age groups, based on age of the household head. 
Roughly two-thirds of younger households (age 18 to 35) and older households (age 80 and 
above) households are benefited, compared to 44% of households age 50 to 65. 
 
The pattern of benefits across groups makes sense given the impact of age on both carbon 
footprints and dividend received. Older households tend to have smaller footprints, reflecting 
reduced mobility and less consumption as a result of low fixed incomes. Younger households 
tend to be larger – and therefore benefited by the dividend formula – in addition to having less 
income/consumption in early career. 
 
Households in the “35 to 50” and “50 to 65” groups, on the other hand, have higher 
incomes/consumption and, as children age and move out, smaller and less efficient households 
(from a carbon footprint perspective). 

 30 



Figure 13 - Percentage of households benefited, by age group 

 
 
Figure 14 reports net effects across different household types. “Elderly” households are those 
with a household head age 65 or older, no more than two adults, and no children present. 
“Poverty” and “Low income” refer to households with income below 100% and 200% of FPL, 
respectively. 
 
Reflecting the strong progressivity seen earlier, 88% of households living below the poverty line 
are benefited by the policy. Among households in poverty, the average net benefit is $311 per 
household or about 2.8% of average household income. 
 
Household income is not the sole determinant of policy effects. This is evidenced by comparing 
results for the “Minority” and “Elderly” groups. Household income as a percentage of FPL is 
similar for the two groups, but minority households see significantly larger positive effects: mean 
NFB of $148 versus just $2 for elderly households. This is likely due to differences in household 
composition and resulting dividend allotment. 
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Figure 14 - Percentage of households benefited, by household type 

 
 
Figure 15 reports net effects by race, based on the self-identified race of the household head.  
 
Most noticeable is the fact that three-quarters of Latino households are benefited by the policy, 
compared to less than one-half of white households. On average, Latino households are not only 
poorer than white households (generally associated with a lower footprint) but also significantly 
larger in size. Since the dividend formula benefits larger households (and especially households 
with multiple adults), this leads to both higher pre-tax dividend and NFB.47 
 
Overall, the results highlight the ways in which geographic and social differences can combine 
with the design of the policy to produce important – and sometimes unforeseen – distributional 
outcomes. 

47 It is also possible that Latino households (and perhaps Asian households), on average, benefit from geographic 
concentration in parts of the country with comparatively mild climates, though this is not explicitly tested. 
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Figure 15 - Percentage of households benefited, by race 

 

7.4 Gross tax burden across consumption categories 

Figure 16 shows the mean per-person gross tax burden across income quintiles, broken 
down by consumption category. The results show how the burden of higher costs (pre-
dividend) are allocated across different types of consumption, assuming complete pass-
through of the tax into consumer prices. The categories are aggregates of more detailed 
categories used in the modeling itself. Table 2 in Section 10 provides the mapping from 
detailed to aggregate categories. 
 
The “Shelter” category is noticeably small for all quintiles and included separately to make 
explicit the limited effect of carbon pricing on actual housing costs. While housing is a 
major component of household expenditure, carbon pricing is expected to have no effect on 
monthly outlays for households that already own property either outright (zero cost) or via 
a fixed-rate mortgage (fixed cost). The effect on renters and would-be buyers due to higher 
costs for new home construction will vary with local housing market conditions and not 
considered here. 
 
The Shelter component reflects only emissions associated with insurance, maintenance, 
and management of existing properties (including vacation homes and operation of hotels), 
not new construction. That said, the “Allocated PFI” (Private Fixed Investment) component 
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effectively includes the tax burden associated with new residential construction (among 
other things) but is simply assumed to be proportional to total household expenditure as 
explained in Section 6.1. 

Figure 16 - Gross tax burden by income quintile and consumption category 

 
 
The “Private health care” category reflects an assumption regarding increases in premiums 
for private health insurance plans (described in Section 6.1). Since low-income and elderly 
households are assumed to be covered by public health insurance (Medicaid and Medicare, 
respectively), the private insurance tax burden is negligible among households in the first 
quintile. 
 
The “Gasoline” and “Utilities” categories reflect higher costs for direct energy purchases. All 
other categories reflect indirect tax burden due to higher prices for other goods and services. 
Across all households, the direct tax burden is 45% of the total. This figure varies from 40% for 
households in the top quintile to 50% for those in the first. 
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8 Conclusion 

This study simulates a “carbon fee and dividend” policy similar to that proposed by the Citizens’ 
Climate Lobby (CCL), assuming a “static” economy in which the policy is implemented 
“overnight” with 100% pass-through of the tax into consumer prices, no change in household 
behavior, and no change in production processes, technologies, or macroeconomic conditions. 
 
I find that the policy confers a positive net financial benefit on 53% of households nationwide 
(58% of individuals). The overall distributional effects are highly progressive. Nearly 90% of 
households living below the federal poverty line are benefited by the policy. The average net 
benefit in this group is $311 per household, equivalent to 2.8% of average pre-tax income. 
 
The typical size of the after-tax dividend (additional disposable income) does not vary 
considerably across the income distribution. As expected, the tax burden imposed through higher 
prices for goods and services increases with income. Overall, the policy’s primary distributional 
effect is to shift purchasing power from the top quintile to the bottom two quintiles of the income 
distribution. 
 
Differential impacts across space and population subgroups highlight the ways in which “geo-
demographic” patterns (Singleton and Spielman 2014) combine with policy design to affect 
distributional outcomes. The results suggest that details of the dividend allotment formula with 
respect to household size and age, for example, could meaningfully impact the distribution of 
benefits. A different dividend design could prove equally simple to administer and explain while 
generating net positive benefits for a larger portion of the population. 
 
Indeed, once the distribution of carbon tax burdens across households is accurately specified 
(and Section 5 makes significant progress here), a principle task – from a policy perspective – is 
to identify revenue distribution schemes that lead to micro and macro effects amenable to both 
sides of the political spectrum. Certainly, this task has not been ignored (e.g. Metcalf 2007; 
Williams et al. 2014a; Kaufman and Krause 2016), but “high-resolution” data and analysis – 
whether used to simulate household rebates, more complex changes to the tax code, or simply 
“downscale” output from other models – may help communicate policy options in ways that are 
more meaningful to politicians and the broader public. 
 
Further, the challenge of creating “fair” or “equitable” carbon tax policy – for example, policy 
that does not unduly harm vulnerable populations – requires not only being able to identify 
critical populations in modeling output (ideally along richer dimensions than income groups 
alone) but also going beyond simple mean effects. I focused in Section 7 on the presentation of 
“percent benefited” results, because I believe this metric is closer to what we should care about 
most: not leaving some people (literally) out in the cold. For those interested in the full detail that 
large-sample micro-simulations can provide, I include additional distributional results in Section 
10. 
 
Among the real-world complications ignored here is the effect of higher consumer prices on 
government transfer programs and spending. This is most notable in the case of Social Security 
benefits, which are indexed to inflation through existing law. In the event of higher consumer 
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prices due to carbon pricing, Social Security benefits will maintain purchasing power even in the 
absence of a dividend or rebate program (albeit with an important temporal lag). Strictly 
speaking, the CCL proposal would confer a dividend upon seniors in addition to the mandated 
benefit increase. I explicitly ignore the mandated increase in benefits and simulate only the effect 
of the modified per-capita dividend.48 
 
The central assumption that consumers bear the full cost of the tax should probably be viewed as 
a worst-case scenario with respect to distributional outcomes. Should the tax be borne in part by 
owners of capital and, to a lesser extent, labor – thereby impacting households through reduced 
income rather than higher prices – the gross tax burden will be less regressive than assumed here 
(Rausch, Metcalf, and Reilly 2011). 
 
Whatever the aggregate size and direction of effects on employment and wages, it will not fall 
uniformly across industries (Ho, Morgenstern, and Shih 2008). Certain types of workers (e.g. 
coal miners) and their families and communities will be impacted more than others. It is not 
immediately clear how inclusion of largely place- and industry-specific employment effects 
would alter distributional outcomes.49 Since it is possible to observe the occupation of each 
worker in the fused CEX-ACS household sample, however, there is the possibility of gaining 
some clarity on this question in the future. 
 
The static analysis also assumes no change in household consumption patterns in response to 
higher prices. While this approach approximates the formal welfare loss under carbon pricing 
(Metcalf 1999), it is effectively a worst-case scenario from a household financial perspective. In 
practice, some households could reduce their tax burden through changes that impose little or no 
inconvenience – for example, turning off lights in an unoccupied room. But others face taxation 
of activities that are not easily avoided or substituted for – for example, long commutes in places 
with no public transportation. As in the case of employment, the real-world financial effects are 
likely to vary considerably from one household to another. 
 

48 Social Security cost-of-living adjustments (COLA’s) introduced in January are based on the year-on-year change 
in the BLS Consumer Price Index observed for the preceding third quarter. Consequently, there is a lag of up to 15 
months between real-world price changes and adjustment of benefits. The effect would be most pronounced at the 
onset of a carbon pricing program. The simulation here is a fair representation of how policymakers might choose to 
address the problem of “lagging COLA’s” in the initial year (via a dividend). If maintained beyond the initial year, 
however, extending dividends to seniors in addition to mandated COLA’s would have significant distributional and 
budgetary consequences. 
49 For example, if those households most exposed to negative employment effects already experience net losses for 
unrelated reasons, then employment effects could make some households even worse off without significantly 
changing the overall proportion of households benefited. 
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10 Additional tables and figures 

Table 2 - Mapping of detailed consumption categories to aggregates 

Detailed category Aggregate category 
Alcoholic beverages Food and drink 
Beef Food and drink 
Cereals and baked goods Food and drink 
Dairy Food and drink 
Food away from home Food and drink 
Fruits and vegetables Food and drink 
Nonalcoholic beverages Food and drink 
Other food at home Food and drink 
Pork Food and drink 
Poultry and fish Food and drink 
Gasoline Gasoline 
Apparel Other products 
Furniture Other products 
Household textiles Other products 
Laundry and cleaning supplies Other products 
Major appliances Other products 
Miscellaneous household equipment Other products 
Other entertainment supplies, equipment, and services Other products 
Personal care products and services Other products 
Pets, toys, and playground equipment Other products 
Small appliances, miscellaneous house wares Other products 
Television, radios, sound equipment Other products 
Tobacco products and smoking supplies Other products 
Education Other services 
Fees and admissions Other services 
Other household expenses Other services 
Personal insurance and pensions Other services 
Personal services Other services 
Telephone services Other services 
Water and other public services Other services 
Air travel Other transport 
New car and truck net outlay Other transport 
Other vehicle net outlay Other transport 
Public transportation Other transport 
Used car and truck net outlay Other transport 
Vehicle maintenance and repairs Other transport 
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Vehicle rental, leases, licenses, other charges Other transport 
Private health insurance premiums Private health care 
Home insurance Shelter 
Home maintenance and repairs Shelter 
Other shelter Shelter 
Rent Shelter 
Electricity Utilities 
Heating oil Utilities 
LPG Utilities 
Natural gas Utilities 
Other fuels Utilities 
Private fixed investment (PFI) 
Allocated proportional to household total expenditure 

Allocated PFI 

 

Figure 17 - Distribution of net financial benefit, by income quintile 
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Figure 18 - Distribution of net financial benefit, by age group 

 

Figure 19 - Distribution of net financial benefit, by household type 
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Figure 20 - Distribution of net financial benefit, by race 

 

Figure 21 - Distribution of net financial benefit, by community type 
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