How a biochemist became a climate activist

science

Science professor Henry Jakubowski talks to a local Rotary Club in Minnesota about climate change and a carbon fee-and-dividend economic approach to reduce CO2 emissions. Photo courtesy of David Matthew, St. Cloud Rotary Club

How a biochemist became a climate activist

By Henry Jakubowski

This essay originally appeared in ASBMB Today, a monthly publication distributed to members of the American Society for Biochemistry and Molecular Biology. It is reprinted in part, with permission, below.

When the concentration of atmospheric carbon dioxide passed 400 parts per million in June 2016, I felt a sense of urgency. The last time CO2 was 400 ppm was 3.5 million years ago in the Pliocene Epoch, when the poles were 10 F warmer and sea levels were 16 to 131 feet higher.

As I listened to my children speak of both global and local economic and social upheavals arising from climate-related migrations and environmental changes, I started to envision a dismal future for them. I heard young people questioning whether they should have children in an increasingly unstable and insecure world. I felt a growing sense of guilt. As a member of the generation that bequeathed them this future, and as a scientist/educator, have I failed in communicating the power of science to address societal concerns? Am I partly to blame for the growing disbelief in the process of science, especially as related to climate change?

When the U.S. pulled out of the Paris climate accord and began removing environmental regulations, my sense of urgency increased. After decades of teaching, I asked myself, What can I do? More importantly, what should I do?

I have taught aspects of climate change, but mostly to non-science majors in courses designed to address social issues. In those classes, I could focus on the process of science. For example, by reading sections of Thomas Kuhn’s “Structure of Scientific Revolutions,” my students began to grasp how scientific consensus develops, matures and changes; these ideas are critical to nonscientists as they evaluate information. In my science majors’ courses, however, I follow a prescribed syllabus, and we have little time to discuss the science related to societal issues.

After January 2017, I felt ethically compelled to discuss climate change in all my classes. Since then, I have found ways to relate background infrared spectra (which students take each lab) arising from atmospheric CO2 to climate warming arising from absorption of infrared light by greenhouse gases.

In our separations/chromatography lab, when I discuss doing 60-liter blood preps to isolate clotting proteins from cows, I take the opportunity to talk about the climatic implications of raising 41 million tons of plant protein to produce an estimated 7 million tons of animal protein for human consumption, and I note that the U.S. could feed 800 million people with the grain that livestock eat. Add greenhouse methane emissions from those cows and the carbon-hydrogen infrared stretch they see each day in the lab, and climate change can become real.

When covering influenza virus hemagglutinin binding to cell surface receptors, I discuss future pandemics arising from emerging viruses and their links to climate change. The role of bicarbonate transporters and carbonic anhydrase could be studied in coral formation and the global carbon cycle.

I often can’t gauge students’ immediate responses, but one teaching assistant, after taking my lab, told me how much my discussion of animal and plant protein generation affected her understanding of the interrelatedness between unquestioned societal practices and climate change, leading her to decrease her meat consumption.

Continue reading Henry’s essay in ASBMB Today!

Send this to a friend

Hey friend,
Please check this out on https://citizensclimatelobby.org.

How a biochemist became a climate activist,
https://citizensclimatelobby.org/how-a-biochemist-became-a-climate-activist/

I hope you find this useful.